# Notes

## from Mar, 2022

replied to a post on Twitter with
@tweetsauce your argument is weaksauce at best. The scale conversion between C and F is 9/5 which is just shy of 2. If you think humans can “feel” that scale of temperature difference in daily life you are being ludicrous! And the range conversion of 32 is just random so bite me!
replied to a post on Twitter with
Yes, I know how to do that, which is why I asked a much more specific question.
replied to a post on Twitter with
Very nice! I will let you know, your notebook looks a lot like mine but with words instead of Greek math symbols!
So here’s why what I asked earlier is useful for physics. I don’t think I need to explain why the Lorentz group is useful; relativity and all that. Its double cover is SL(2,C) which is useful for handling spinors (as some would say “fermions”). I’ll be a bit vague though. In relativity, the kinds of “particles” (really fields) one wants are representations of the Poincare group i.e. spacetime translations and Lorentz. This was solved a long time ago by Wigner with a really ingenious construction. I’ll skip over unitary/faithfulness etc… The translations are “easily” represented in Fourier space: so instead of a function of spacetime position x you have a function of momentum p (note p and x are Minkowski 4-vectors). Now, we need to represent the Lorentz transformations. So here’s Wigner’s idea: pick a momentum p and find the largest subgroup of SL(2,C) which leaves this p invariant; that’s the little group L_p of the momentum you chose. Now you can act on this p by Lorentz transformations to get a whole bunch of other momenta. If you act by anything in L_p it just gives you back p; so you will get something different if you act by SL(2,C)/L_p i.e. Lorentz transformations “not in” L_p. This quotient space is called the orbit space O_p of the chosen p. In our case O_p is a manifold, and has a measure invariant under SL(2,C). So to construct the representations (wavefunctions/fields) you start with functions on the orbit O_p and integrate them over the orbit. Sounds like fancy nonsense so examples: 1) If you choose p to be a future timelike momentum, then L_p = SU(2) i.e. rotations; and O_p = H3 the Riemannian hyperboloid sitting in the future light cone. And the wavefunctions are functions on H3; these are the usual wavefunctions of massive fields in momentum space. 2,3) If you choose p to be null or spacelike you get a similar story with O_p being future light cone or the one-sheeted Lorentzian hyperboloid. The wavefunctions are then for massless or tachyonic fields. In each case, we had an “obvious” invariant measure on the orbit space O_p since they all sit nicely as submanifolds of the Minkowski spacetime. This measure is obtained as a “quotient” of the Haar measure on SL(2,C); not sure how explicitly! So what’s the big deal, we know all the cases we want, right? Well, enter General Relativity, where there is no symmetry. But there is an asymptotic symmetry group, which is BMS not Poincare, if you care about gravitational radiation and memory effect. The analog of the 4-momentum p is now the supermomentum, which is a function on a 2-sphere not a 4-vector. But you can still play the same little group game as Wigner; with some very important subtleties about topology on infinite-dimensional groups like BMS. This was worked out a long time ago by P. J. McCarthy e.g. https://doi.org/10.1098/rspa.1972.0157 You get more weird little groups. 1) One little group you get is a simple double cover of U(1), whose orbit space is H3 × S2 2) Another one is little group Z2, whose orbit space is H3 × RP3, this is just the Lorentz group (no double cover) In each case an invariant measure on the orbit space is guaranteed to exist due to math (McCarthy does this in an appendix) but is there a nice formula for these measures?
replied to a post on Twitter with
I have looked at that paper/notes before, but I am not sure I understand it. If you look at the last formula in section 1.3 on pg. 3, the k and k’ are in SU(2) and the r is a real radial coordinate. So that measure looks like it is 7-dimensional which seems wrong.
replied to a post on Twitter with
No need to worry about that. The centre is a Z2 i.e. it is the double cover-ness. If you only look at the identity component you get usual Lorentz (no double cover).
replied to a post on Twitter with
That’s as far as I got too! I’ll post a short thread explaining why this is useful for physics later this evening.
replied to a post on Twitter with
Yes, pick your favourite coordinates on R3 (or H3) and S3. I really don’t care which ones you pick, I’d like one example expression.
replied to a post on Twitter with
It will. But that is also not explicitly given anywhere in terms of some nice coordinates.
math/physics question (cc:@johncarlosbaez) Take the group SL(2,C), the double cover of the identity-connected component of the Lorentz group. As a manifold this group is homeomorphic to R3 × S3, where R3 are Lorentz boosts and S3 the group SU(2) (double cover of rotations). You can also view the R3 as a Riemannian hyperbolic space H3. Now H3 has a natural Lorentz invariant measure, and S3 has a natural rotation invariant measure. So the left-invariant Haar measure on SL(2,C) should be some positive function F times the measures on H3 and S3. Is there an explicit expression for this Haar measure in term of some/any coordinates on H3 and S3? (Asking here because I’m tired of the condescension on math/stack overflow towards explicit examples)
New life goal: Slap @rickygervais for making jokes about my hair loss, and then win the Nobel prize for physics!
Tired of slap-fest? Why not read something new about infrared scattering in QFT and quantum gravity: https://arxiv.org/abs/2203.14334 The usual formulation of scattering for massless fields (which escape to null infinity) is beset by divergences in the infrared (IR), i.e, the S-matrix amplitudes diverge at zero frequency. This zero frequency effect is directly related to the physical memory effect; so we cannot just wish this IR divergence away. At null infinity, this memory effect labels an infinite-number of Hilbert spaces all of which are unitarily-inequivalent! In QED with massive scalars, the Faddeev-Kulish construction by gives a nice way to stitch these Hilbert spaces together, by “dressing” all the in/out massive states with memory to have a fixed value of infinitely-many charges at spatial infinity which is conserved in scattering. If you use a massless scalar source, the “dressing” becomes too singular — so singular in fact that the energy flux through null infinity diverges! Massless charged scalars do not wear a shirt to the red carpet! But then GR shows up and slaps all the dressings in the face! The only state in GR which has fixed charges at spatial infinity is the Minkowski vacuum state! Mayhaps GR will win an Oscar someday too… The issue really is trying to shoehorn all the quantum states into a single Hilbert space; quantum states, in the algebraic sense, are perfectly well-defined. So we suggest that we should try to define scattering also in the algebraic formulation.
I never had this on my to do list when writing to a journal as a physicist: “It looks like your review submission site is broken, probably due to some bad Javascript code.” The rest of the email is diagnosing their borked form validation in JS.
replied to a post on Twitter with
Most of the world has had practice; a list from my lifetime: 1) https://en.wikipedia.org/wiki/List_of_wars:_1990%E2%80%932002 2) https://en.wikipedia.org/wiki/List_of_wars:_2003%E2%80%93present Westerners are distraught only because one of “them” is being attacked.
Can someone explain to me what the hell UV/IR mixing means?